Sharp Lipschitz Constants for the Distance Ratio Metric

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best constants for Lipschitz embeddings of metric spaces into c

We answer a question of Aharoni by showing that every separable metric space can be Lipschitz 2-embedded into c0 and this result is sharp; this improves earlier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best constant for Lipschitz embeddings of the classical `p-spaces into c0 and give other applications. We prove that if a Banach space embeds almost isometrical...

متن کامل

Metric Learning via Maximizing the Lipschitz Margin Ratio

In this paper, we propose the Lipschitz margin ratio and a new metric learning framework for classification through maximizing the ratio. This framework enables the integration of both the inter-class margin and the intra-class dispersion, as well as the enhancement of the generalization ability of a classifier. To introduce the Lipschitz margin ratio and its associated learning bound, we elabo...

متن کامل

Lipschitz Extension Constants Equal Projection Constants

For a Banach space V we define its Lipschitz extension constant, LE(V ), to be the infimum of the constants c such that for every metric space (Z, ρ), every X ⊂ Z, and every f : X → V , there is an extension, g, of f to Z such that L(g) ≤ cL(f), where L denotes the Lipschitz constant. The basic theorem is that when V is finite-dimensional we have LE(V ) = PC(V ) where PC(V ) is the well-known p...

متن کامل

Lipschitz Metric for the Hunter–saxton Equation

We study stability of solutions of the Cauchy problem for the Hunter–Saxton equation ut + uux = 14 ( R x −∞ u 2 x dx− R∞ x ux dx) with initial data u0. In particular, we derive a new Lipschitz metric dD with the property that for two solutions u and v of the equation we have dD(u(t), v(t)) ≤ edD(u0, v0).

متن کامل

Lipschitz Constants to Curve Complexes

We determine the asymptotic behavior of the optimal Lipschitz constant for the systole map from Teichmüller space to the curve complex.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATHEMATICA SCANDINAVICA

سال: 2015

ISSN: 1903-1807,0025-5521

DOI: 10.7146/math.scand.a-20452